

Fermilab Contributions to CDF Physics

Eric James FNAL Wilson Fellow

May 17th, 2006 DOE Program Review

CDF Collaboration

- 61 institutions from 12 countries
 - Spanning North America, Europe, and Asia
- Approximately 620 total authors
- Fermilab CDF group is the largest single group
 - 64 FNAL authors
 - Majority (42) from Particle Physics Division
 - Other members come from Computing (10),
 Technical (7), and Accelerator (5) divisions

Tevatron Performance

- Challenge:
 maintain detector
 performance in
 high luminosity
 environment
- Opportunity:
 extract compelling
 physics from the
 rapidly increasing
 data samples

Luminosity Challenge

Increasing Bandwidth

- Increasing luminosity translates to need for increased bandwidth at each stage of CDF data handling
- Working to minimize the time from data collection to publication of physics results

FNAL Group Contributions

- FNAL group members have important leadership roles and responsibilities at each level of the data handling path
- Almost all group members have some technical responsibility related to maintenance and operation of the detector
- Over the past two years roughly 30 FNAL group members have held leadership positions in online and offline operations

FNAL Group Physics

- The Fermilab group also plays an important role in maximizing CDF physics output
- Roughly half of the 64 Fermilab group authors have a current, active role in CDF data analysis including ~10 full-time postdoctoral researchers
- Over the past two years 13 Fermilab group members have held leadership positions within CDF analysis groups
- High success rate at obtaining tenure-track jobs for Fermilab postdocs (seven of last eight).

Physics Overview

- CDF Run II physics priorities
 - Detailed studies of the top quark using high statistics samples
 - Searches for new physics (SUSY, Extra Dimensions, etc...)
 - Precision Standard Model measurements
- Fermilab group members making important contributions in each of these areas.
- Strong Fermilab presence in all of the CDF physics groups
 - Top, Exotics, B, Electroweak, and QCD

CDF Publications

- The CDF collaboration has published 47 Run II physics papers
 - Plus 9 accepted and 18 submitted
- Fermilab group members have made a significant contribution to roughly 30% of these publications
 - PRL: 9 accepted, 5 submitted
 - PRD: 6 accepted, 2 submitted

FNAL Group Publications

- $B_d, B_s \rightarrow \mu\mu$ (PRL) Glenzinski, Lin, Thom, Yagil
- Dilepton t-tbar cross section (PRL) Glenzinski, Merkel, Thom, Wittich, Yagil
- J/Ψ and b hadron cross sections (PRD) Miao, Bishai, Tkaczyk, Lewis, Litvintsev
- Search for anomalous diphoton + MET events (PRD) Culbertson
- W/Z boson production cross sections (PRL) Hocker, James, Murat
- Diphoton production cross sections (PRL) Culbertson
- Jet shape analysis (PRD) Martinez
- W boson charge asymmetry (PRD) Nelson
- Lepton plus jets kinematic t-tbar cross section (PRD) Erbacher, Roser
- Updated B_d , $B_s \rightarrow \mu\mu$ (PRL) Glenzinski, Lin
- Template + DLM lepton plus jets top mass (PRL) Chlachidze, Velev
- Template lepton plus jets top mass (PRD) Chlachidze, Velev
- Evidence for $B_c \to J/\Psi \pi$ (PRL) Papadimitriou
- High mass dilepton search (PRL) Maeshima, Nelson
- Search for charged Higgs from top decays (PRL) Eusebi, Hocker
- W/Z boson production cross sections (PRD) Hocker, James, Murat
- Measurement of $\Lambda_b \to \Lambda_c^+ \pi^- (PRL)$ Dimtri
- Inclusive jet cross section using cone algorithm (PRL) Chlebana
- Measurement of B_c lifetime (PRL) Ting
- Template dilepton top mass (PRD) Ambrose, Beretvas, Chlachidze, Velev
- Observation of $B_s \to \Psi(2S) \phi$ (PRL) Liu
- Search for large extra dimensions (PRL) Burkett, James, Yagil

Top Quark Studies

- Top quark studies are unique to the Tevatron.
- Top quark is ~40 times heavier than the next heaviest quark suggesting a special role within the SM
- Measurement of the top quark mass constrains the SM Higgs mass

Top Mass Measurement

- CDF has measured the top mass in all available final states
- Lepton plus jets channel provides world's single highest precision top quark mass measurement

G. Velev

$$M_{top} = 173.4 \pm 1.7 \pm 2.2 \text{ GeV/c}^2$$

(Lepton plus Jets)

Combined Measurement

- CDF results are the world's best single measurements in each individual channel
- Combining all CDF measurements → 1.5% precision
- The combined CDF result is more precise than previous world average.

Future Prospects

- Current result (▼)
 exceeds original Run
 II goal (★)
- Largest systematic is jet energy scale uncertainty which can be improved with more data
- CDF measurement will reach a precision of 1% using the full Run II dataset

Large Extra Dimensions

- Extra dimensions are an important component of many theories (e.g. string theories)
- Can explain the difference in the EWK and Plank scales (hierarchy problem)
- Direct graviton production at the Tevatron results in distinctive "monojet" events

Monojet Analysis

- Select events with one high E_T jet (above 150 GeV) and large missing E_T (greater than 120 GeV)
- Estimate SM backgrounds
 using a data-driven approach
 based on W→lv + jet and
 Z→ll + jet samples (l = e,µ)
- Removal of non-collision background events is critical

K. Burkett, E. James, A. Yagil

Limits on M_D

- Best lower limits on M_D for five or more extra dimensions
- New 1 fb⁻¹ result (summer 2006) will have significantly improved reach

Diphoton Searches

- Signature based search sensitive to a wide variety of new physics models
- Partially motivated by unusual Run I ee $\gamma\gamma$ plus missing E_T event
- Select events with two photons
 (E_T > 13 GeV) and some other
 third object X where X = photon,
 muon, electron, missing E_T,
 etc...

Gauge-mediated SUSY-breaking models

Three Photon Events

R. Culbertson, S. Pronko, E. Yu

Diphoton plus Electron Events

- Numbers of observed events consistent with SM background estimates
- New physics would likely appear at high H_T and/or Missing E_T

$B \rightarrow \mu\mu$ Search

• In the SM, BR(B_s $\to \mu\mu$) = 3.5 x 10⁻⁹

• Enhanced by 1-3 orders of magnitude in SUSY

• Signal observation provides unambiguous evidence for new physics

Signal/Background Separation

Uses a multivariate
 likelihood ratio based
 on the measured B
 lifetime, track
 isolation, and the
 observed consistency
 of the measured B
 hadron direction with
 the primary and
 secondary vertices

D. Glenzinski, C. Lin

Search Window

- Separate B_s and B_d mass windows (60 MeV) provide window into the underlying flavor physics
- Observed signals consistent with background

World's Best Limits:

$$BR(B_d \to \mu\mu) < 1.0 \text{ x } 10-7$$

$$BR(B_s \to \mu\mu) < 3.0 \text{ x } 10-8$$

SUSY Constraints

• SO(10) Grand unification Model (R. Dermisek et al.) from 2003 (left) and 2005 (right)

B_s Mixing

$$\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 \text{ ps}^{-1}$$

$$|V_{td}| / |V_{ts}| \propto \Delta m_d / \Delta m_s$$

$$=0.208^{+0.001}_{-0.003}$$
 (exp) $^{+0.008}_{-0.006}$ (theo)

- New constraint is 4.5x better than previous result
- At large values of Δm_s the measurement significance is dominated by hadronic decays

Next Steps

- B_s significance is proportional to $S/\sqrt{(S+B)}$
- Neural network
 can be used to
 independently
 optimize event
 selection in each
 hadronic channel
- Improves
 measurement
 using current
 dataset

Improved Sensitivity

Table of S and B $(S/\sqrt{S+B} _{total} = \Sigma S_i/\sqrt{\Sigma S_i + \Sigma B_i})$				
	RECT cuts		NN se	lection
Mode	S	В	S	В
$B_s \rightarrow D_s^- \pi^+$, $D_s \rightarrow \phi \pi$	1430	317	1704	239
$B_s \rightarrow D_s^- \pi^+$, $D_s \rightarrow K^{*0}K$	649	328	828	293
$B_s \rightarrow D_s^- \pi^+$, $D_s \rightarrow 3\pi$	487	595	696	546
$B_s \rightarrow D_s^-(3\pi)^+, D_s \rightarrow \phi\pi$	421	620	649	185
$B_s \rightarrow D_s^-(3\pi)^+, D_s \rightarrow K^{*0}K$	185	334	425	192
$B_s \rightarrow D_s^-(3\pi)^+, D_s \rightarrow 3\pi$	_	_	225	162
Total $S/\sqrt{S+B}$, 5.31 – 5.42 GeV/c ²	43.30		57	.78

• Incorporating neural network in event selection increases $S/\sqrt{(S+B)}$ by 33% which is equivalent to including 77% additional data

K. Anikeev

B_c Mass

- First observation of B_c $(\rightarrow J/\Psi l^+\nu)$ made by CDF in 1998
- Precision measurement of the B_c mass provides an important test of heavy quark effective theory
- With Run II detector and greater luminosity, $B_c (\rightarrow J/\Psi \pi^+)$ can be utilized

Mass Measurement

- In 800 pb-1, observe 39 events over a background estimate of 26 events (6σ significance)
- Measure $M(B_c) = 6275.2 \pm 4.9 \text{ MeV/c}^2$
- 80x more precise than current world average

P. Lukens, S. Tkacyzk, W. Wester

Work in Progress

- Improved top mass measurement (Datta)
- W helicity in top decays (Golossanov, Hocker)
- Top spin correlations (Eusebi)
- Double charm correlation (Reisert)
- $\sigma(\chi_{c2}) / \sigma(\chi_{c1})$ in J/ $\Psi \gamma$ (Lukens)
- B_c lifetime (Miao)
- SUSY search for high p_T dimuons (Nachtman)
- Z' dimuon mass peak search (Nachtman)
- Search for long-lived massive particles (Snider)

Conclusions

- CDF is prepared for multi-fb⁻¹ datasets
 - Have increased bandwidth from collisions to publication
- Fermilab group makes important contributions at every stage
 - Online data collection
 - Offline data processing
 - Analysis and publication